

Jeff Freymueller
Geophysical Institute
University of Alaska Fairbanks

Take Home Messages

- Relative sea level is determined by both the level of the ocean and the level of the land
 - The land surface in southern Alaska is moving faster than global sea level is presently changing.
 - But rising sea level is likely to "catch up" eventually.
- We can measure these motions precisely
- We know the main causes of these motions
- We must extend models that explain horizontal motions to explain vertical motions.
 - Can we project motions decades into the future?

Predicted Global Average Sea Level

Relative Sea Level

Relative Sea Level

- RSL = level of the sea minus level of the land
- Both terms can vary regionally
 - Level of the sea: thermal expansion, addition of water, gravity field, oceanography
 - Level of the land: tectonics, post-glacial rebound, changes in water/ice loading, compaction of sediments, etc.
- In Alaska, land level changes are, in general, more rapid than sea level changes.

Uplift Rates – Kenai Peninsula

Global Positioning System

- Portable Surveying Equipment
- Precision of a few millimeters in 3D
- Repeated surveys measure motion of sites

Measuring the Crust

- GPS surveys repeated over time
- Series of positions records the motion of a point fixed to the crust
 - Plate motion
 - Deformation
 - Measurement noise
- Three Dimensions!

Vertical Time Series

Uplift Rates – Kenai Peninsula

Main Causes of Uplift Locally

- Post-Glacial Rebound/Glacial Isostatic Adjustment
 - Uplift of the land caused by removal of ice load
 - Time-delayed (viscous) response due to past load changes
 - Instant (elastic) response due to ongoing load changes
- Tectonic effects
 - Uplift due to post-seismic deformation after 1964 earthquake
 - Deformation due to plate coupling at subduction zone

Post-Glacial Rebound – Melting Ice

From repeat glacial altimetry

Arendt et al. (2002)

From geoid changes (GRACE)

Luthcke et al. (2008)

Uplift Rates

Uplift Rates Yakutat cefields Glacier Bay 58' 160 GUS2 Height (mm) 80 0 -160 transaction and transacti 1998 1999 2000 2001 2002 2003 2004 2005 2006 Year

Predicted Uplift/Subsidence Rates

One Year's Seismicity

Tectonic and Earthquake Effects

Subsidence in 1964

Post-1964 Postseismic Uplift

Knowns and Unknowns

- Can we measure and/or predict vertical motions precisely enough
 - How far into the future?
 - Available models explain the horizontal observations well. Do they explain vertical? Or is there something missing?
- Bedrock vs. soft sediments
 - Sediments self-compact how fast?
 - Silt-rich tidal flats vs. "old" sediments in town

Project Goals

- Measure vertical motions across Kachemak Bay more precisely
 - Precise enough for useful relative sea level predictions
 - Verify that uplift rates are not uniform in region
- Extend models that work for horizontal motions to explain vertical
- Project future relative sea level change locally
- Combine with response of ecosystems

Continuous GPS sites (CORS)

